Перевод: с английского на все языки

со всех языков на английский

he's New York-born

  • 1 -born

    - born [bɔ:n]
    originaire de;
    he's New York-born il est né à New York, il est originaire de New York;
    she's English-born elle est d'origine anglaise

    Un panorama unique de l'anglais et du français > -born

  • 2 born

    1.
    pp от bear

    be born — роди́ться

    I was born in New York — я роди́лся в Нью-Йо́рке

    2. a
    рождённый; ( при)рождённый; урождённая

    born Johnson — урождённая Джо́нсон

    born out of wedlock — рождённый вне бра́ка

    - born and bred

    The Americanisms. English-Russian dictionary. > born

  • 3 Bibliography

     ■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.
     ■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.
     ■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
     ■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.
     ■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.
     ■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).
     ■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.
     ■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.
     ■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.
     ■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.
     ■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.
     ■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.
     ■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.
     ■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.
     ■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.
     ■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.
     ■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)
     ■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.
     ■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.
     ■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.
     ■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.
     ■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.
     ■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.
     ■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.
     ■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.
     ■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.
     ■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.
     ■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.
     ■ Bolton, N. (1972). The psychology of thinking. London: Methuen.
     ■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.
     ■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.
     ■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.
     ■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.
     ■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.
     ■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.
     ■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.
     ■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.
     ■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.
     ■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.
     ■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.
     ■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.
     ■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)
     ■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)
     ■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.
     ■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.
     ■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.
     ■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.
     ■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.
     ■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.
     ■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.
     ■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.
     ■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.
     ■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
     ■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.
     ■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.
     ■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.
     ■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.
     ■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.
     ■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.
     ■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.
     ■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.
     ■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.
     ■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.
     ■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.
     ■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.
     ■ Copland, A. (1952). Music and imagination. London: Oxford University Press.
     ■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.
     ■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.
     ■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.
     ■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.
     ■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.
     ■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.
     ■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.
     ■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.
     ■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.
     ■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Damasio, A. (1994). Descartes' error: Emotion, reason, and the human brain. New York: Avon.
     ■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.
     ■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.
     ■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.
     ■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.
     ■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.
     ■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.
     ■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.
     ■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.
     ■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)
     ■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)
     ■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)
     ■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)
     ■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)
     ■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)
     ■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.
     ■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.
     ■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.
     ■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.
     ■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.
     ■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.
     ■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.
     ■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.
     ■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.
     ■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.
     ■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.
     ■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.
     ■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.
     ■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.
     ■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.
     ■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.
     ■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.
     ■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.
     ■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.
     ■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)
     ■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)
     ■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.
     ■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)
     ■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.
     ■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)
     ■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.
     ■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.
     ■ Ghiselin, B. (1952). The creative process. New York: Mentor.
     ■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)
     ■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.
     ■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.
     ■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.
     ■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.
     ■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.
     ■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)
     ■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.
     ■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
     ■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.
     ■ Harris, M. (1981). The language myth. London: Duckworth.
     ■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.
     ■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.
     ■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.
     ■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.
     ■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.
     ■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)
     ■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.
     ■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.
     ■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.
     ■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.
     ■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.
     ■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.
     ■ Hobbes, T. (1651). Leviathan. London: Crooke.
     ■ Hofstadter, D. R. (1979). Goedel, Escher, Bach: An eternal golden braid. New York: Basic Books.
     ■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.
     ■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.
     ■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.
     ■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)
     ■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)
     ■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)
     ■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.
     ■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.
     ■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])
     ■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.
     ■ James, W. (1890b). The principles of psychology. New York: Henry Holt.
     ■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.
     ■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.
     ■ Johnson, M. L. (1988). Mind, language, machine. New York: St. Martin's Press.
     ■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
     ■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.
     ■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.
     ■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.
     ■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)
     ■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)
     ■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.
     ■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.
     ■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).
     ■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.
     ■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.
     ■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.
     ■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.
     ■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.
     ■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.
     ■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.
     ■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.
     ■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.
     ■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.
     ■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.
     ■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.
     ■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.
     ■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.
     ■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)
     ■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)
     ■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.
     ■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.
     ■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.
     ■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.
     ■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)
     ■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)
     ■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)
     ■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.
     ■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.
     ■ Manguel, A. (1996). A history of reading. New York: Viking.
     ■ Margolis, H. (1987). Patterns, thinking, and cognition. Chicago: University of Chicago Press.
     ■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.
     ■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.
     ■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.
     ■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.
     ■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.
     ■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.
     ■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.
     ■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.
     ■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.
     ■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.
     ■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.
     ■ Miller, J. (1983). States of mind. New York: Pantheon Books.
     ■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.
     ■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.
     ■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.
     ■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.
     ■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.
     ■ Murdoch, I. (1954). Under the net. New York: Penguin.
     ■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.
     ■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.
     ■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.
     ■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
     ■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.
     ■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.
     ■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.
     ■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.
     ■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.
     ■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.
     ■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.
     ■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.
     ■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)
     ■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.
     ■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:
     ■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)
     ■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.
     ■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.
     ■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)
     ■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.
     ■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.
     ■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.
     ■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.
     ■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.
     ■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.
     ■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In
     ■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.
     ■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)
     ■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.
     ■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)
     ■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.
     ■ Pinker, S. (1994). The language instinct. New York: Morrow.
     ■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.
     ■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.
     ■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)
     ■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.
     ■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.
     ■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
     ■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.
     ■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.
     ■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.
     ■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.
     ■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.
     ■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.
     ■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.
     ■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.
     ■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.
     ■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.
     ■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.
     ■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.
     ■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.
     ■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.
     ■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.
     ■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.
     ■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.
     ■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.
     ■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.
     ■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.
     ■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)
     ■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.
     ■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.
     ■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.
     ■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.
     ■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.
     ■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.
     ■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.
     ■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.
     ■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.
     ■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.
     ■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.
     ■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.
     ■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)
     ■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).
     ■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.
     ■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.
     ■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.
     ■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.
     ■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.
     ■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.
     ■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.
     ■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.
     ■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.
     ■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.
     ■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.
     ■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.
     ■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.
     ■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.
     ■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)
     ■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.
     ■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.
     ■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.
     ■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.
     ■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.
     ■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)
     ■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.
     ■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.
     ■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.
     ■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)
     ■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.
     ■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.
     ■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.
     ■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.
     ■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.
     ■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.
     ■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.
     ■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.
     ■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.
     ■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.
     ■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.
     ■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.
     ■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.
     ■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.
     ■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.
     ■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.
     ■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.
     ■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.
     ■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.
     ■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.
     ■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.
     ■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.
     ■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.
     ■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.
     ■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.
     ■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.
     ■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.
     ■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.
     ■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.
     ■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.
     ■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.
     ■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.
     ■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.
     ■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).
     ■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.
     ■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.
     ■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.
     ■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.

    Historical dictionary of quotations in cognitive science > Bibliography

  • 4 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 5 Clark, Edward

    [br]
    fl. 1850s New York State, USA
    [br]
    American co-developer of mass-production techniques at the Singer sewing machine factory.
    [br]
    Born in upstate New York, where his father was a small manufacturer, Edward Clark attended college at Williams and graduated in 1831. He became a lawyer in New York City and from then on lived either in the city or on his rural estate near Cooperstown in upstate New York. After a series of share manipulations, Clark acquired a one-third interest in Isaac M. Singer's company. They soon bought out one of Singer's earlier partners, G.B.Zeiber, and in 1851, under the name of I.M.Singer \& Co., they set up a permanent sewing machine business with headquarters in New York.
    The success of their firm initially rested on marketing. Clark introduced door-to-door sales-people and hire-purchase for their sewing machines in 1856 ($50 cash down, or $100 with a cash payment of $5 and $3 a month thereafter). He also trained women to demonstrate to potential customers the capabilities of the Singer sewing machine. At first their sewing machines continued to be made in the traditional way, with the parts fitted together by skilled workers through hand filing and shaping so that the parts would fit only onto one machine. This resembled European practice rather than the American system of manufacture that had been pioneered in the armouries in that country. In 1856 Singer brought out their first machine intended exclusively for home use, and at the same time manufacturing capacity was improved. Through increased sales, a new factory was built in 1858–9 on Mott Street, New York, but it soon became inadequate to meet demand.
    In 1863 the Singer company was incorporated as the Singer Manufacturing Co. and began to modernize its production methods with special jigs and fixtures to help ensure uniformity. More and more specialized machinery was built for making the parts. By 1880 the factory, then at Elizabethport, New Jersey, was jammed with automatic and semi-automatic machine tools. In 1882 the factory was producing sewing machines with fully interchangeable parts that did not require hand fitting in assembly. Production rose from 810 machines in 1853 to half a million in 1880. A new family model was introduced in 1881. Clark had succeeded Singer, who died in 1875, as President of the company, but he retired in 1882 after he had seen through the change to mass production.
    [br]
    Further Reading
    National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production, 1800–1932. The Development of Manufacturing Technology in the United States, Baltimore (a thorough account of Clark's role in the development of Singer's factories).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot.
    RLH

    Biographical history of technology > Clark, Edward

  • 6 Merritt, William Hamilton

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 3 July 1793 Bedford, Winchester County, New York, USA
    d. 5 July 1862 aboard a vessel on the Cornwall Canal, Canada
    [br]
    American-born Canadian merchant, entrepreneur and promoter of the First and Second Welland Canals bypassing the Niagara Falls and linking Lakes Ontario and Erie.
    [br]
    Although he was born in the USA, his family moved to Canada in 1796. Educated in St Catharines and Niagara, he received a good training in mathematics, navigation and surveying. He served with distinction in the 1812–14 war, although he was captured by the Americans in 1814. After the war he established himself in business operating a sawmill, a flour mill, a small distillery, a potashery, a cooperage and a smithy, as well as running a general store. By 1818 he was one of the leading figures in the area and realized that for real economic progress it was essential to improve communications in the Niagara peninsula; in that year he surveyed a route for a waterway that would carry boats.
    In c. 1820 he began discussions with neighbouring landowners and businessmen, who, on 19 January 1824 together obtained a charter for building the first Welland Canal to link Lakes Ontario and Erie. They were greatly influenced by the realization that the completion of the Erie Canal would attract trade through the United States instead of through Canada. Construction began on 30 November 1824, largely with redundant labour from the Erie Canal. Merritt foresaw the need for financial support and for publicity to sustain interest in the project. Accordingly he started a newspaper, the Farmer's Journal and Welland Canal Intelligencer, which was published until 1835. He also visited York (now Toronto), the capital of Upper Canada, and obtained some support, but the Government was reluctant to assist financially. He was more successful in raising money in New York. Then in 1828 he visited England to see Telford and persuaded both Telford and the Duke of Wellington, among others, to purchase shares. The Canal opened on 30 November 1829. In 1832 Merritt became a member of the Legislative Assembly of Upper Canada, and after the Union of the Canadas in 1841 he was elected to the new Assembly, later serving as Minister of Public Works and then as President of the Assembly. He advocated improvements to the St Lawrence River and also promoted railways. He pioneered a bridge across the Niagara River that was opened in 1849 and later carried a railway. He was not a canal engineer, but he did pioneer communications in developing territory.
    [br]
    Further Reading
    R.M.Styran and R.R.Taylor, 1988, The Welland Canals. The Growth of Mr Merritt's
    Ditch, Erin, Ont.: Boston Mills Press.
    JHB

    Biographical history of technology > Merritt, William Hamilton

  • 7 live

    Ⅰ.
    live1 [lɪv]
    vivre1 (a), 1 (b), 1 (d), 1 (f), 2 habiter1 (c) se nourrir1 (e)
    plants need oxygen to live les plantes ont besoin d'oxygène pour vivre;
    as long as I live tant que je vivrai, de mon vivant;
    was she still living when her grandson was born? est-ce qu'elle était encore en vie quand son petit-fils est né?;
    he hasn't long to live il ne lui reste pas beaucoup de temps à vivre;
    she didn't live long after her son died elle n'a pas survécu longtemps à son fils;
    the doctors think she'll live les médecins pensent qu'elle vivra;
    ironic you'll live! tu n'en mourras pas!;
    I won't live to see them grow up je ne vivrai pas assez vieux pour les voir grandir;
    she'll live to be 100 elle vivra jusqu'à 100 ans, elle sera centenaire;
    we live in interesting times nous vivons une époque intéressante;
    to live on borrowed time être en sursis;
    to live to a ripe old age vivre vieux ou jusqu'à un âge avancé;
    figurative the dialogue is what makes the characters live ce sont les dialogues qui donnent de la vie aux personnages;
    your words will live in our hearts/memories vos paroles resteront à jamais dans nos cœurs/notre mémoire
    to live dangerously vivre dangereusement;
    familiar go on, live dangerously! allez, vas-y, on n'a qu'une vie!;
    to live well vivre bien;
    they lived happily ever after ils vécurent heureux jusqu'à la fin de leurs jours;
    he lives by the rules il mène une vie bien rangée;
    the rules we all live by les règles auxquelles nous nous plions tous;
    she lives for her children/for skiing elle ne vit que pour ses enfants/que pour le ski;
    he lived for music il ne vivait que pour la musique;
    we're living for the day we emigrate nous vivons dans l'attente du jour où nous émigrerons;
    she was living for the chance of revenge la perspective de vengeance était sa raison de vivre;
    to live in poverty/luxury vivre dans la pauvreté/le luxe;
    to live in fear vivre dans la peur;
    he lives in the past il vit dans le passé;
    we live in uncertain times nous vivons une époque incertaine;
    humorous he lives in that shirt! il a cette chemise sur le dos en permanence!;
    proverb live and let live! = il faut savoir faire preuve de tolérance!;
    well, you live and learn! on en apprend tous les jours!
    (c) (reside) habiter;
    where does she live? où habite-t-elle?;
    they have nowhere to live ils sont à la rue;
    the giant tortoise lives mainly in the Galapagos la tortue géante vit surtout aux Galapagos;
    they live in Rome ils habitent (à) Rome, ils vivent à Rome;
    I lived in France for a year j'ai vécu en France pendant un an;
    to live in a flat/a castle habiter (dans) un appartement/un château;
    she lives in a fifth-floor flat elle vit dans un appartement au cinquième étage;
    to live at Number 10 habiter au numéro 10;
    to live in the town/country habiter ou vivre en ville/à la campagne;
    I live in or on Bank Street j'habite Bank Street;
    they live in or on my street ils habitent (dans) ma rue;
    to live on the street être à la rue;
    she lives on the ground floor elle habite au rez-de-chaussée;
    he practically lives in or at the library il passe sa vie à la bibliothèque;
    do you live with your parents? habitez-vous chez vos parents?;
    old-fashioned or humorous to live in sin (with sb) vivre dans le péché (avec qn)
    they don't earn enough to live ils ne gagnent pas de quoi vivre;
    he lives by teaching il gagne sa vie en enseignant;
    the tribe lives by hunting la tribu vit de la chasse
    (e) (obtain food) se nourrir;
    we've been living out of cans or tins lately on se nourrit de conserves depuis quelque temps;
    he was reduced to living out of rubbish bins il en était réduit à fouiller les poubelles pour se nourrir
    (f) (exist fully, intensely) vivre;
    she really knows how to live elle sait vraiment profiter de la vie;
    let's live for the moment or for today! vivons l'instant présent!;
    I want to live a little je veux profiter de la vie;
    if you haven't been to New York, you haven't lived! si tu n'es jamais allé à New York, tu n'as rien vu!
    vivre;
    to live a life of poverty vivre dans la pauvreté;
    to live a life of luxury mener la grande vie;
    to live a solitary life mener une vie solitaire;
    to live a lie être dans une situation fausse;
    she lived the life of a film star for six years elle a vécu comme une star de cinéma pendant six ans;
    familiar to live it up faire la fête;
    my father lives and breathes golf mon père ne vit que pour le golf
    (recover from → error, disgrace, ridicule)
    they'll never let him live that down ils ne lui passeront ou pardonneront jamais cela;
    if I forget her birthday, I'll never live it down! si j'oublie son anniversaire, elle ne me le pardonnera jamais!;
    you'll never live this down! tu n'as pas fini d'en entendre parler!
    (a) (servant) être logé et nourri; (worker, nurse) être logé ou habiter sur place;
    all their farm hands live in tous leurs ouvriers agricoles sont logés sur place
    (b) (pupil) être interne
    (a) (sponge off) vivre aux crochets de;
    he lives off his parents il vit aux crochets de ses parents
    (b) (savings) vivre de; (nuts, berries) se nourrir de;
    they live off the fruit of other people's labours ils vivent du produit du travail d'autrui;
    to live off the land vivre de la terre
    live on
    (person) continuer à vivre; (custom, ideal) persister;
    she lived on to the end in the same house elle a vécu dans la même maison jusqu'à sa mort;
    his memory lives on son souvenir est encore vivant
    (a) (food) vivre de, se nourrir de;
    to live on fruit and vegetables vivre de fruits et de légumes
    (b) (salary) vivre de;
    it's not enough to live on ce n'est pas suffisant pour vivre;
    to earn enough to live on gagner de quoi vivre;
    how does she live on that salary? comment s'en sort-elle avec ce salaire?;
    his pension is all they have to live on ils n'ont que sa retraite pour vivre;
    to live on $800 a month vivre avec 800 dollars par mois
    to live on one's wits vivre d'expédients;
    to live on one's name vivre sur sa réputation
    (a) (spend) passer;
    she lived out the rest of her life in Spain elle a passé le reste de sa vie en Espagne
    (b) (fulfil) vivre;
    he lived out his destiny sa destinée s'est accomplie, il a suivi son destin;
    to live out one's fantasies réaliser ses rêves
    the maid lives out la bonne ne loge pas sur place;
    he studies here but lives out il est étudiant ici mais il n'habite pas sur le campus
    they live out of tins ils ne mangent que des conserves
    (experience → war, hard times etc) vivre, connaître; (survive → war, drought) survivre à;
    they've lived through war and famine ils ont connu la guerre et la famine;
    he's unlikely to live through the winter il est peu vraisemblable qu'il passe l'hiver
    (as a couple) vivre ensemble, cohabiter
    (name, reputation) se montrer à la hauteur de; (expectation) être ou se montrer à la hauteur de, répondre à;
    we have a reputation to live up to! nous avons une réputation à défendre!;
    it's too much for me to live up to on m'en demande trop;
    the holiday didn't live up to our expectations les vacances n'étaient pas à la hauteur de nos espérances
    (a) (cohabit with) vivre avec;
    she lived with him for a couple of years before they got married elle a vécu avec lui pendant quelques années avant qu'ils se marient
    she's not easy to live with elle n'est pas facile à vivre;
    I don't like the situation, but I have to live with it cette situation ne me plaît pas, mais je n'ai pas le choix;
    I couldn't live with myself if I didn't tell him the truth je ne supporterais pas de ne pas lui dire la vérité;
    you'll always live with the guilt la culpabilité vous poursuivra toute la vie;
    it's not ideal but I can live with it ce n'est pas l'idéal mais je m'y ferai
    ✾ Book ✾ Film 'You only live twice' Fleming, Gilbert 'On ne vit que deux fois'
    To live fast, die young and leave a beautiful corpse À l'origine, cette phrase provient du titre d'un film de 1949 mis en scène par Nicholas Ray intitulé Knock on Any Door ("Les Ruelles du malheur"), dont le personnage principal, un marginal joué par John Derek, voulait "vivre vite, mourir jeune et laisser un beau cadavre". Aujourd'hui cette formule est davantage associée aux personnages de rebelles qu'incarnaient James Dean et d'autres jeunes acteurs des années 50 et 60, et à la vie trépidante qu'ils menaient dans la réalité. Cette formule est généralement utilisée dans sa version tronquée ( live fast and die young) pour faire référence à un style de vie débridé. On dira par exemple I don't like these modern pop stars and their live fast, die young attitude ("je n'aime pas les vedettes de la musique pop d'aujourd'hui qui ne pensent qu'à s'amuser sans jamais penser aux conséquences").
    Ⅱ.
    live2 [laɪv]
    (a) (alive → animal, person) vivant;
    the live weight of the animal le poids de l'animal sur pied;
    they feed the snakes on live mice ils nourrissent les serpents de souris vivantes;
    familiar a real live cowboy un cow-boy, un vrai de vrai
    (b) Music, Radio & Television (programme, interview, concert) en direct;
    live pictures from Mars des images en direct de Mars;
    Sinatra live at the Palladium Sinatra en concert au Palladium;
    recorded before a live audience enregistré en public
    (c) Electricity (connected) sous tension
    (d) Technology (load) roulant, mobile
    (e) (unexploded) non explosé
    (f) (still burning → coals, embers) ardent
    (g) (not extinct → volcano) actif
    (h) (controversial) controversé;
    a live issue un sujet controversé
    en direct;
    to perform live (singer, group) chanter en direct;
    they've never performed live ils n'ont jamais fait de scène;
    the match can be seen/is going out live at 3.30 p.m. on peut suivre le match/le match est diffusé en direct à 15 heures 30;
    the show comes live from New York City le spectacle nous arrive en direct de New York
    ►► live ammunition balles fpl réelles;
    Technology live axle essieu m moteur, pont m;
    live births naissances fpl viables;
    Computing live cam caméra f Internet;
    Electricity live circuit circuit m alimenté ou sous tension;
    live entertainment spectacle m; (broadcast) spectacles mpl en direct;
    nobody goes to see live entertainment any more plus personne ne va au spectacle de nos jours;
    the theatre and other forms of live entertainment le théâtre et autres formes de divertissement;
    live music musique f live;
    live oak chêne m vert;
    American familiar live one (dupe) poire f, pigeon m;
    live recording enregistrement m live ou public;
    Electricity live wire fil m sous tension;
    familiar figurative she's a real live wire elle déborde d'énergie ;
    Cookery live yoghurt yaourt m actif

    Un panorama unique de l'anglais et du français > live

  • 8 Muybridge, Eadweard

    [br]
    b. 9 April 1830 Kingston upon Thames, England
    d. 8 May 1904 Kingston upon Thames, England
    [br]
    English photographer and pioneer of sequence photography of movement.
    [br]
    He was born Edward Muggeridge, but later changed his name, taking the Saxon spelling of his first name and altering his surname, first to Muygridge and then to Muybridge. He emigrated to America in 1851, working in New York in bookbinding and selling as a commission agent for the London Printing and Publishing Company. Through contact with a New York daguerreotypist, Silas T.Selleck, he acquired an interest in photography that developed after his move to California in 1855. On a visit to England in 1860 he learned the wet-collodion process from a friend, Arthur Brown, and acquired the best photographic equipment available in London before returning to America. In 1867, under his trade pseudonym "Helios", he set out to record the scenery of the Far West with his mobile dark-room, christened "The Flying Studio".
    His reputation as a photographer of the first rank spread, and he was commissioned to record the survey visit of Major-General Henry W.Halleck to Alaska and also to record the territory through which the Central Pacific Railroad was being constructed. Perhaps because of this latter project, he was approached by the President of the Central Pacific, Leland Stanford, to attempt to photograph a horse trotting at speed. There was a long-standing controversy among racing men as to whether a trotting horse had all four hooves off the ground at any point; Stanford felt that it did, and hoped than an "instantaneous" photograph would settle the matter once and for all. In May 1872 Muybridge photographed the horse "Occident", but without any great success because the current wet-collodion process normally required many seconds, even in a good light, for a good result. In April 1873 he managed to produce some better negatives, in which a recognizable silhouette of the horse showed all four feet above the ground at the same time.
    Soon after, Muybridge left his young wife, Flora, in San Francisco to go with the army sent to put down the revolt of the Modoc Indians. While he was busy photographing the scenery and the combatants, his wife had an affair with a Major Harry Larkyns. On his return, finding his wife pregnant, he had several confrontations with Larkyns, which culminated in his shooting him dead. At his trial for murder, in February 1875, Muybridge was acquitted by the jury on the grounds of justifiable homicide; he left soon after on a long trip to South America.
    He again took up his photographic work when he returned to North America and Stanford asked him to take up the action-photography project once more. Using a new shutter design he had developed while on his trip south, and which would operate in as little as 1/1,000 of a second, he obtained more detailed pictures of "Occident" in July 1877. He then devised a new scheme, which Stanford sponsored at his farm at Palo Alto. A 50 ft (15 m) long shed was constructed, containing twelve cameras side by side, and a white background marked off with vertical, numbered lines was set up. Each camera was fitted with Muybridge's highspeed shutter, which was released by an electromagnetic catch. Thin threads stretched across the track were broken by the horse as it moved along, closing spring electrical contacts which released each shutter in turn. Thus, in about half a second, twelve photographs were obtained that showed all the phases of the movement.
    Although the pictures were still little more than silhouettes, they were very sharp, and sequences published in scientific and photographic journals throughout the world excited considerable attention. By replacing the threads with an electrical commutator device, which allowed the release of the shutters at precise intervals, Muybridge was able to take series of actions by other animals and humans. From 1880 he lectured in America and Europe, projecting his results in motion on the screen with his Zoopraxiscope projector. In August 1883 he received a grant of $40,000 from the University of Pennsylvania to carry on his work there. Using the vastly improved gelatine dry-plate process and new, improved multiple-camera apparatus, during 1884 and 1885 he produced over 100,000 photographs, of which 20,000 were reproduced in Animal Locomotion in 1887. The subjects were animals of all kinds, and human figures, mostly nude, in a wide range of activities. The quality of the photographs was extremely good, and the publication attracted considerable attention and praise.
    Muybridge returned to England in 1894; his last publications were Animals in Motion (1899) and The Human Figure in Motion (1901). His influence on the world of art was enormous, over-turning the conventional representations of action hitherto used by artists. His work in pioneering the use of sequence photography led to the science of chronophotography developed by Marey and others, and stimulated many inventors, notably Thomas Edison to work which led to the introduction of cinematography in the 1890s.
    [br]
    Bibliography
    1887, Animal Locomotion, Philadelphia.
    1893, Descriptive Zoopraxography, Pennsylvania. 1899, Animals in Motion, London.
    Further Reading
    1973, Eadweard Muybridge: The Stanford Years, Stanford.
    G.Hendricks, 1975, Muybridge: The Father of the Motion Picture, New York. R.Haas, 1976, Muybridge: Man in Motion, California.
    BC

    Biographical history of technology > Muybridge, Eadweard

  • 9 city

    ['sɪtɪ]
    n
    See:

    I am allergic to big cities. — В больших городах я чувствую себя неуютно.

    Outlying districts were annexed by the city. — Пригороды вошли в черту города.

    The road runs between the two cities. — Эти два города соединены дорогой.

    New suburbs sprang up all around the city. — Вокруг города возникли новые районы.

    The city was destroyed by fire. — Город был уничтожен пожаром.

    Cities are taken by ears. — Молва города берет.

    - rapidly growing city
    - developing city
    - free city
    - great city
    - overpopulated city
    - densely populated city
    - European city
    - oriental city
    - major cities
    - industrial city
    - capital city
    - cathedral city
    - fortress city
    - sister cities
    - townsman
    - city life
    - city folk
    - city water supply
    - city gas supply
    - city utility service
    - city government
    - city builder
    - city traffic
    - city fathers
    - city authorities
    - city with a population of... people
    - city of military glory
    - attractions of a big city
    - outskirts of the city
    - offices buildings of the city
    - bird's eye view of the city
    - views of the city
    - guests of the city
    - places of interest
    - green belt around the city
    - favourite spots of city folk
    - major of the city
    - post-card with views of the city
    - monuments of the city
    - guide book to the city
    - limits of the city
    - slums of the city
    - city planning
    - outlay of the city
    - centre of the city
    - clatter of the busy city
    - general sightseeing tour around the city
    - in the city of Moscow
    - within the city
    - from one end of the city to the other
    - from all parts of the city co
    - all over the city
    - east ward of the city
    - wander around a city
    - restore a city
    - be city bred
    - give running commentary during a city sightseeing trip
    - live in a city
    - do a city
    - found a city
    - lay out parks in the city
    - plan out a city
    - expand the boundaries of the city
    - capture a city
    - abandon the city to the enemy
    - attack a city
    - rebuild a city
    - pay a visit to a city
    - city lies is located on the river
    USAGE:
    (1.) Притом, что английское существительное в принципе утратило категорию рода, и неодушевленное существительное имеет обычно заместителем местоимение it, иногда проявляются рудименты утраченной родовой системы. Так, city имеет женский род: Нью-Йорк - красивый город, New-York - she is a beautiful city; города-побратимы - sister cities. (2.) Для образования названий жителей городов существует несколько словообразовательных моделей разной степени продуктивности. Наиболее продуктивен суффикс -er, прибавляющийся к названию города: London - Londoner, New-York - New-Yorker. Менее продуктивны суффиксы -ian: Paris - Parisian; -an: Rome - Roman; -ite: Moscow - Moscowite. От некоторых названий городов нельзя образовать названий жителей по модели: Liverpool - Liverpoollian, a Scouser (inform.); Manchester - Manchurian; Glasgow - Glaswegians. Всегда можно употребить словосочетание: a citizen of London, residents of Lisbon, city-dwellers и предложение She/he comes from Aberbin - она/он из Абердина. (3.) Citizen - имеет два значения: (1) горожанин и (2) гражданин. Во втором значении имеет синонимы subject и national. Citizen - полноправный житель страны - an American citizen; She is German by birth but is now a French citizen. Она родилась в Америке, но сейчас постоянно живет во Франции. Citizenship - гражданство, включает права и обязанности гражданина: He applied for American citizenship. Он подал заявление/прошение об американском гражданстве. She was granted British citizenship. Она получила британское гражданство. Subject - подданный - употребляется лишь в монархических государствах: a British subject. National - житель страны, но гражданин другого государства: Many Turkish nationals work in Germany. В Германии работает много граждан Турции. (4.) Сочетание a capital city и the capital of the country имеют разные значения. A capital city - большой город регионального значения: New-York (Rostov-on-Don, Barcelona) is a capital city. Столица государства - the capital: London is the capital of the UK. CULTURE NOTE: (1.) Некоторые города имеют традиционные названия: Eternal City - Вечный город - Рим; City in Seven Hills - Город на семи холмах - Рим; City of Dreaming Spires - Город дремлющих шпилей - Оксфорд; City of David - Град Давидов - Иерусалим и Вифлеем; City of Brotherly Love - (Am.) Город братской любви - Филадельфия; Empire City - Имперский город - Нью-Йорк; Big Apple City - Город большого яблока - Нью-Йорк; Fun City - город развлечений - Нью-Йорк; Federal City - Вашингтон; The Granite City - город Абердин (Шотландия); Holy City - Священный город - Иерусалим; Forbidden City - "Запретный город" - дворец китайского императора; Cities of the Plain - библ. Содом и Гоморра; Soul City - Гарлем; Windy City - Чикаго; Quaker City - город квакеров - Филадельфия; The City of God - Град Господень - небо, церковь; The Heavenly City - Новый Иерусалим; Celestial City - царствие небесное библ. Небесный град - Новый Иерусалим; Sea-born town - город, рожденный морем - Венеция. (2.) Разные территориальные части Лондона имеют разные названия. Они употребляются с определенным артиклем и пишутся с заглавной буквы: the West End - аристократический район города; the East End - рабочий район; the City - деловая часть Лондона; Soho - район иммигрантов в центре Лондона, известен своими ресторанами национальной кухни; The Docks - бывший район доков и верфей, теперь перестроен и имеет современный вид, место, где обычно селится Лондонская богема

    English-Russian combinatory dictionary > city

  • 10 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 11 Berezin, Evelyn

    [br]
    b. 1925 New York, USA
    [br]
    American pioneer in computer technology.
    [br]
    Born into a poor family in the Bronx, New York City, Berezin first majored in business studies but transferred her interest to physics. She graduated in 1946 and then, with the aid of an Atomic Energy Commission fellowship, she obtained her PhD in cosmic ray physics at New York University. When the fellowship expired, opportunities in the developing field of electronic data processing seemed more promising than thise in physics. Berezin entered the firm of Electronic Computer Corporation in 1951 and was asked to "build a computer", although few at that time had actually seen one; the result was the Elecom 200. In 1953, for Underwood Corporation, she designed the first office computer, although it was never marketed, as Underwood sold out to Olivetti.
    Berezin's next position was as head of logic design for Teleregister Corporation in the late 1950s. Here, she led a team specializing in the design of on-line systems. Her most notable achievement was the design of a nationwide online computer reservation system for United Airlines, the first system of this kind and the precursor of similar on-line systems. It was installed in the early 1960s and was the first large non-military on-line interactive system.
    In the 1960s Berezin moved to the Digitronics Corporation as manager of logic design, her work here resulted in the first high-speed commercial digital communications terminal. Also in the 1960s, her involvement in Data Secretary, a challenger to the IBM editing typewriter, makes it possible to regard her as one of the pioneers of word processing. In 1976 Berezin transferred from the electronic data and computing field to that of financial management.
    [br]
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, 651–3.
    LRD

    Biographical history of technology > Berezin, Evelyn

  • 12 Dickson, William Kennedy Laurie

    [br]
    b. August 1860 Brittany, France
    d. 28 September 1935 Twickenham, England
    [br]
    Scottish inventor and photographer.
    [br]
    Dickson was born in France of English and Scottish parents. As a young man of almost 19 years, he wrote in 1879 to Thomas Edison in America, asking for a job. Edison replied that he was not taking on new staff at that time, but Dickson, with his mother and sisters, decided to emigrate anyway. In 1883 he contacted Edison again, and was given a job at the Goerk Street laboratory of the Edison Electric Works in New York. He soon assumed a position of responsibility as Superintendent, working on the development of electric light and power systems, and also carried out most of the photography Edison required. In 1888 he moved to the Edison West Orange laboratory, becoming Head of the ore-milling department. When Edison, inspired by Muybridge's sequence photographs of humans and animals in motion, decided to develop a motion picture apparatus, he gave the task to Dickson, whose considerable skills in mechanics, photography and electrical work made him the obvious choice. The first experiments, in 1888, were on a cylinder machine like the phonograph, in which the sequence pictures were to be taken in a spiral. This soon proved to be impractical, and work was delayed for a time while Dickson developed a new ore-milling machine. Little progress with the movie project was made until George Eastman's introduction in July 1889 of celluloid roll film, which was thin, tough, transparent and very flexible. Dickson returned to his experiments in the spring of 1891 and soon had working models of a film camera and viewer, the latter being demonstrated at the West Orange laboratory on 20 May 1891. By the early summer of 1892 the project had advanced sufficiently for commercial exploitation to begin. The Kinetograph camera used perforated 35 mm film (essentially the same as that still in use in the late twentieth century), and the kinetoscope, a peep-show viewer, took fifty feet of film running in an endless loop. Full-scale manufacture of the viewers started in 1893, and they were demonstrated on a number of occasions during that year. On 14 April 1894 the first kinetoscope parlour, with ten viewers, was opened to the public in New York. By the end of that year, the kinetoscope was seen by the public all over America and in Europe. Dickson had created the first commercially successful cinematograph system. Dickson left Edison's employment on 2 April 1895, and for a time worked with Woodville Latham on the development of his Panoptikon projector, a projection version of the kinetoscope. In December 1895 he joined with Herman Casier, Henry N.Marvin and Elias Koopman to form the American Mutoscope Company. Casier had designed the Mutoscope, an animated-picture viewer in which the sequences of pictures were printed on cards fixed radially to a drum and were flipped past the eye as the drum rotated. Dickson designed the Biograph wide-film camera to produce the picture sequences, and also a projector to show the films directly onto a screen. The large-format images gave pictures of high quality for the period; the Biograph went on public show in America in September 1896, and subsequently throughout the world, operating until around 1905. In May 1897 Dickson returned to England and set up as a producer of Biograph films, recording, among other subjects, Queen Victoria's Diamond Jubilee celebrations in 1897, Pope Leo XIII in 1898, and scenes of the Boer War in 1899 and 1900. Many of the Biograph subjects were printed as reels for the Mutoscope to produce the "what the butler saw" machines which were a feature of fairgrounds and seaside arcades until modern times. Dickson's contact with the Biograph Company, and with it his involvement in cinematography, ceased in 1911.
    [br]
    Further Reading
    Gordon Hendricks, 1961, The Edison Motion Picture Myth.
    —1966, The Kinetoscope.
    —1964, The Beginnings of the Biograph.
    BC

    Biographical history of technology > Dickson, William Kennedy Laurie

  • 13 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 14 Mariza

    (Marisa dos Reis Nunes)
    (1973-)
       Internationally celebrated, popular singer of the "new fado." Born in Mozambique on 16 December 1973, at the time a colony of Portugal, Marisa dos Reis Nunes is the daughter of a Portuguese father and a mother born in Mozambique. Her maternal grandmother is African. "Mariza," the stage name selected after she became a noted performer, moved to Portugal at age three and lived in some of Lisbon's older quarters, including Alfama and Mouraria, where there is a tradition of fado singing. After she learned to sing, her favorite early styles were gospel, soul, and jazz, before she became an established singer of fado. Her first album, Fado em Mim (2001) was very popular in Portugal, and soon she became an international singing celebrity whose distinctive voice and attractive if exotic looks helped win over audiences.
       Mariza's early singing style was reminiscent of the singing of Portugal's great fado singer of an earlier generation, Amália Rodrigues. Especially noteworthy is her hairstyle, which resembles the "marcelling" style of women in the 1920s and 1930s. By 2008, she had been recognized as a two-time Latin Grammy nominee for her distinctive new style and voice. A fervent globetrotter in her concert touring, she has been feted in many countries in all the continents of the world, and she has performed in Carnegie Hall, New York, Hollywood Bowl, London's Royal Albert Hall, Sydney Opera House, Toronto's Massey Hall, and many other important venues. Her album Concerto em Lisboa received a Latin Grammy nomination for Best Folk Album in 2007, and her most recent performances reflect influences on her fado of jazz, Flamenco, and Latin and African sounds.

    Historical dictionary of Portugal > Mariza

  • 15 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 16 Carnot, Nicolas Léonard Sadi

    [br]
    b. 1 June 1796 Paris, France
    d. 24 August 1831 Paris, France
    [br]
    French laid the foundations for modern thermodynamics through his book Réflexions sur la puissance motrice du feu when he stated that the efficiency of an engine depended on the working substance and the temperature drop between the incoming and outgoing steam.
    [br]
    Sadi was the eldest son of Lazare Carnot, who was prominent as one of Napoleon's military and civil advisers. Sadi was born in the Palais du Petit Luxembourg and grew up during the Napoleonic wars. He was tutored by his father until in 1812, at the minimum age of 16, he entered the Ecole Polytechnique to study stress analysis, mechanics, descriptive geometry and chemistry. He organized the students to fight against the allies at Vincennes in 1814. He left the Polytechnique that October and went to the Ecole du Génie at Metz as a student second lieutenant. While there, he wrote several scientific papers, but on the Restoration in 1815 he was regarded with suspicion because of the support his father had given Napoleon. In 1816, on completion of his studies, Sadi became a second lieutenant in the Metz engineering regiment and spent his time in garrison duty, drawing up plans of fortifications. He seized the chance to escape from this dull routine in 1819 through an appointment to the army general staff corps in Paris, where he took leave of absence on half pay and began further courses of study at the Sorbonne, Collège de France, Ecole des Mines and the Conservatoire des Arts et Métiers. He was inter-ested in industrial development, political economy, tax reform and the fine arts.
    It was not until 1821 that he began to concentrate on the steam-engine, and he soon proposed his early form of the Carnot cycle. He sought to find a general solution to cover all types of steam-engine, and reduced their operation to three basic stages: an isothermal expansion as the steam entered the cylinder; an adiabatic expansion; and an isothermal compression in the condenser. In 1824 he published his Réflexions sur la puissance motrice du feu, which was well received at the time but quickly forgotten. In it he accepted the caloric theory of heat but pointed out the impossibility of perpetual motion. His main contribution to a correct understanding of a heat engine, however, lay in his suggestion that power can be produced only where there exists a temperature difference due "not to an actual consumption of caloric but to its transportation from a warm body to a cold body". He used the analogy of a water-wheel with the water falling around its circumference. He proposed the true Carnot cycle with the addition of a final adiabatic compression in which motive power was con sumed to heat the gas to its original incoming temperature and so closed the cycle. He realized the importance of beginning with the temperature of the fire and not the steam in the boiler. These ideas were not taken up in the study of thermodynartiics until after Sadi's death when B.P.E.Clapeyron discovered his book in 1834.
    In 1824 Sadi was recalled to military service as a staff captain, but he resigned in 1828 to devote his time to physics and economics. He continued his work on steam-engines and began to develop a kinetic theory of heat. In 1831 he was investigating the physical properties of gases and vapours, especially the relationship between temperature and pressure. In June 1832 he contracted scarlet fever, which was followed by "brain fever". He made a partial recovery, but that August he fell victim to a cholera epidemic to which he quickly succumbed.
    [br]
    Bibliography
    1824, Réflexions sur la puissance motrice du feu; pub. 1960, trans. R.H.Thurston, New York: Dover Publications; pub. 1978, trans. Robert Fox, Paris (full biographical accounts are provided in the introductions of the translated editions).
    Further Reading
    Dictionary of Scientific Biography, 1971, Vol. III, New York: C.Scribner's Sons. T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.
    Black.
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    D.S.L.Cardwell, 1971, from Watt to Clausius. The Rise of Thermodynamics in the Early Industrial Age, London: Heinemann (discusses Carnot's theories of heat).
    RLH

    Biographical history of technology > Carnot, Nicolas Léonard Sadi

  • 17 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 18 Guericke, Otto von

    [br]
    b. 20 November 1602 Magdeburg, Saxony, Germany
    d. 11 May 1686 Hamburg, Germany
    [br]
    German engineer and physicist, inventor of the air pump and investigator of the properties of a vacuum.
    [br]
    Guericke was born into a patrician family in Magdeburg. He was educated at the University of Leipzig in 1617–20 and at the University of Helmstedt in 1620. He then spent two years studying law at Jena, and in 1622 went to Leiden to study law, mathematics, engineering and especially fortification. He spent most of his life in politics, for he was elected an alderman of Magdeburg in 1626. After the destruction of Magdeburg in 1631, he worked in Brunswick and Erfurt as an engineer for the Swedish government, and then in 1635 for the Electorate of Saxony. He was Mayor of Magdeburg for thirty years, between 1646 and 1676. He was ennobled in 1666 and retired from public office in 168land went to Hamburg. It was through his attendances at international congresses and at princely courts that he took part in the exchange of scientific ideas.
    From his student days he was concerned with the definition of space and posed three questions: can empty space exist or is space always filled? How can heavenly bodies affect each other across space and how are they moved? Is space, and so also the heavenly bodies, bounded or unbounded? In c. 1647 Guericke made a suction pump for air and tried to exhaust a beer barrel, but he could not stop the leaks. He then tried a copper sphere, which imploded. He developed a series of spectacular demonstrations with his air pump. In 1654 at Rattisbon he used a vertical cylinder with a well-fitting piston connected over pulleys by a rope to fifty men, who could not stop the piston descending when the cylinder was exhausted. More famous were his copper hemispheres which, when exhausted, could not be drawn apart by two teams of eight horses. They were first demonstrated at Magdeburg in 1657 and at the court in Berlin in 1663. Through these experiments he discovered the elasticity of air and began to investigate its density at different heights. He heard of the work of Torricelli in 1653 and by 1660 had succeeded in making barometric forecasts. He published his famous work New Experiments Concerning Empty Space in 1672. Between 1660 and 1663 Guericke constructed a large ball of sulphur that could be rotated on a spindle. He found that, when he pressed his hand on it and it was rotated, it became strongly electrified; he thus unintentionally became the inventor of the first machine to generate static electricity. He attempted to reach a complete physical explanation of the world and the heavens with magnetism as a primary force and evolved an explanation for the rotation of the heavenly bodies.
    [br]
    Bibliography
    1672, Experimenta nova (ut vocantur) Magdeburgica de vacuo spatio (New Experiments Concerning Empty Space).
    Further Reading
    F.W.Hoffmann, 1874, Otto von Guericke (a full biography).
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black (contains a short account of his life).
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    Dictionary of Scientific Biography, Vol. V, New York.
    C.Singer (ed.), 1957, A History of Technology, Vols. III and IV, Oxford University Press (includes references to Guericke's inventions).
    RLH

    Biographical history of technology > Guericke, Otto von

  • 19 raise

    [reiz] 1. verb
    1) (to move or lift to a high(er) position: Raise your right hand; Raise the flag.) levantar
    2) (to make higher: If you paint your flat, that will raise the value of it considerably; We'll raise that wall about 20 centimetres.) elevar
    3) (to grow (crops) or breed (animals) for food: We don't raise pigs on this farm.) criar
    4) (to rear, bring up (a child): She has raised a large family.) criar
    5) (to state (a question, objection etc which one wishes to have discussed): Has anyone in the audience any points they would like to raise?) levantar
    6) (to collect; to gather: We'll try to raise money; The revolutionaries managed to raise a small army.) reunir
    7) (to cause: His remarks raised a laugh.) provocar
    8) (to cause to rise or appear: The car raised a cloud of dust.) levantar
    9) (to build (a monument etc): They've raised a statue of Robert Burns / in memory of Robert Burns.) erguer
    10) (to give (a shout etc).) dar
    11) (to make contact with by radio: I can't raise the mainland.) contactar
    2. noun
    (an increase in wages or salary: I'm going to ask the boss for a raise.) aumento
    - raise hell/Cain / the roof
    - raise someone's spirits
    * * *
    [reiz] n 1 aumento. 2 subida, elevação. 3 levantamento: ação de levantar. • vt+vi 1 levantar, erguer, pôr de pé. I raised my glass to him / eu o brindei. 2 elevar, aumentar, subir ou fazer subir. 3 engrandecer, promover, fortalecer. 4 ajuntar, formar, recrutar, alistar. 5 criar, cultivar, plantar. 6 criar, educar. he was born and raised in New York / ele nasceu e foi educado em Nova York. 7 provocar, causar. 8 suscitar, fazer aparecer, evocar. 9 ressuscitar. 10 exclamar. 11 erigir, erguer, construir, edificar. 12 descobrir, achar. the dog raised a rabbit / o cachorro descobriu uma lebre. 13 terminar, acabar, suspender. 14 avistar. the ship raised land / o navio aproximou-se da (avistou) terra. 15 sublevar, revoltar. 16 arranjar, angariar, levantar (fundos). she raised the dough / ela arranjou o dinheiro. 17 armar (tenda). 18 alçar. 19 causar (briga). 20 excitar, animar, incitar (against, upon contra). 21 realçar, frisar. 22 entoar, cantar. he raised me out of sleep ele despertou-me. to raise a blister formar uma bolha de água na pele. to raise a ghost invocar um espírito. to raise a hand to levantar a mão para, bater, tratar mal. to raise a monument erigir um monumento. to raise an army ajuntar, formar um exército. to raise an eyebrow ficar surpreso. to raise a point levantar uma questão. to raise a shout dar um grito. to raise a storm fig provocar, causar uma tempestade. to raise Cain, (mischief, a row) fazer barulho, armar contendas. to raise cloth aveludar pano. to raise dust fazer alarde, criar confusão. to raise hell coll criar caso. to raise money arranjar dinheiro. to raise money on a property empenhar, hipotecar uma propriedade. to raise one’s eyes elevar a vista (to para). to raise one’s glass fazer um brinde à saúde de. to raise one’s hat cumprimentar tirando o chapéu, tirar o chapéu em cumprimento. to raise prices fazer subir os preços. to raise sheep, potatoes, etc. criar ovelhas, cultivar, plantar batatas. to raise the country sublevar o país. to raise the dead ressuscitar os mortos. to raise the nation to power engrandecer a nação, levá-la ao poder. to raise the roof ficar muito bravo, criar caso, armar um pampeiro. to raise the salary aumentar o salário. to raise the siege of a fort levantar o cerco de um forte. to raise the wind a) sl achar meios de arranjar dinheiro por modos fraudulentos. b) provocar distúrbio ou comoção. to raise to a power Math elevar a uma potência. to raise up levantar, alçar.

    English-Portuguese dictionary > raise

  • 20 History of volleyball

    ________________________________________
    William G. Morgan (1870-1942) inventor of the game of volleyball
    ________________________________________
    William G. Morgan (1870-1942), who was born in the State of New York, has gone down in history as the inventor of the game of volleyball, to which he originally gave the name "Mintonette".
    The young Morgan carried out his undergraduate studies at the Springfield College of the YMCA (Young Men's Christian Association) where he met James Naismith who, in 1891, had invented basketball. After graduating, Morgan spent his first year at the Auburn (Maine) YMCA after which, during the summer of 1896, he moved to the YMCA at Holyoke (Massachusetts) where he became Director of Physical Education. In this role he had the opportunity to establish, develop, and direct a vast programme of exercises and sports classes for male adults.
    His leadership was enthusiastically accepted, and his classes grew in numbers. He came to realise that he needed a certain type of competitive recreational game in order to vary his programme. Basketball, which sport was beginning to develop, seemed to suit young people, but it was necessary to find a less violent and less intense alternative for the older members.
    ________________________________________
    ________________________________________
    In 1995, the sport of Volleyball was 100 years old!
    The sport originated in the United States, and is now just achieving the type of popularity in the U.S. that it has received on a global basis, where it ranks behind only soccer among participation sports.
    Today there are more than 46 million Americans who play volleyball. There are 800 million players worldwide who play Volleyball at least once a week.
    In 1895, William G. Morgan, an instructor at the Young Men's Christian Association (YMCA) in Holyoke, Mass., decided to blend elements of basketball, baseball, tennis, and handball to create a game for his classes of businessmen which would demand less physical contact than basketball. He created the game of Volleyball (at that time called mintonette). Morgan borrowed the net from tennis, and raised it 6 feet 6 inches above the floor, just above the average man's head.
    During a demonstration game, someone remarked to Morgan that the players seemed to be volleying the ball back and forth over the net, and perhaps "volleyball" would be a more descriptive name for the sport.
    On July 7, 1896 at Springfield College the first game of "volleyball" was played.
    In 1900, a special ball was designed for the sport.
    1900 - YMCA spread volleyball to Canada, the Orient, and the Southern Hemisphere.
    1905 - YMCA spread volleyball to Cuba
    1907 Volleyball was presented at the Playground of America convention as one of the most popular sports
    1909 - YMCA spread volleyball to Puerto Rico
    1912 - YMCA spread volleyball to Uruguay
    1913 - Volleyball competition held in Far Eastern Games
    1917 - YMCA spread volleyball to Brazil
    In 1916, in the Philippines, an offensive style of passing the ball in a high trajectory to be struck by another player (the set and spike) were introduced. The Filipinos developed the "bomba" or kill, and called the hitter a "bomberino".
    1916 - The NCAA was invited by the YMCA to aid in editing the rules and in promoting the sport. Volleyball was added to school and college physical education and intramural programs.
    In 1917, the game was changed from 21 to 15 points.
    1919 American Expeditionary Forces distributed 16,000 volleyballs to it's troops and allies. This provided a stimulus for the growth of volleyball in foreign lands.
    In 1920, three hits per side and back row attack rules were instituted.
    In 1922, the first YMCA national championships were held in Brooklyn, NY. 27 teams from 11 states were represented.
    In 1928, it became clear that tournaments and rules were needed, the United States Volleyball Association (USVBA, now USA Volleyball) was formed. The first U.S. Open was staged, as the field was open to non-YMCA squads.
    1930's Recreational sports programs became an important part of American life
    In 1930, the first two-man beach game was played.
    In 1934, the approval and recognition of national volleyball referees.
    In 1937, at the AAU convention in Boston, action was taken to recognize the U.S. Volleyball Association as the official national governing body in the U.S.
    Late 1940s Forearm pass introduced to the game (as a desperation play) Most balls played with overhand pass
    1946 A study of recreation in the United States showed that volleyball ranked fifth among team sports being promoted and organized
    In 1947, the Federation Internationale De Volley-Ball (FIVB) was founded in Paris.
    In 1948, the first two-man beach tournament was held.
    In 1949, the first World Championships were held in Prague, Czechoslovakia.
    1949 USVBA added a collegiate division, for competitive college teams. For the first ten years collegiate competition was sparse. Teams formed only through the efforts of interested students and instructors. Many teams dissolved when the interested individuals left the college. Competitive teams were scattered, with no collegiate governing bodies providing leadership in the sport.
    1951 - Volleyball was played by over 50 million people each year in over 60 countries
    1955 - Pan American Games included volleyball
    1957 - The International Olympic Committee (IOC) designated volleyball as an Olympic team sport, to be included in the 1964 Olympic Games.
    1959 - International University Sports Federation (FISU) held the first University Games in Turin, Italy. Volleyball was one of the eight competitions held.
    1960 Seven midwestern institutions formed the Midwest Intercollegiate Volleyball Association (MIVA)
    1964Southern California Intercollegiate Volleyball Association (SCVIA) was formed in California
    1960's new techniques added to the game included - the soft spike (dink), forearm pass (bump), blocking across the net, and defensive diving and rolling.
    In 1964, Volleyball was introduced to the Olympic Games in Tokyo.
    The Japanese volleyball used in the 1964 Olympics, consisted of a rubber carcass with leather panelling. A similarly constructed ball is used in most modern competition.
    In 1965, the California Beach Volleyball Association (CBVA) was formed.
    1968 National Association of Intercollegiate Athletics (NAIA) made volleyball their fifteenth competitive sport.
    1969 The Executive Committee of the NCAA proposed addition of volleyball to its program.
    In 1974, the World Championships in Mexico were telecast in Japan.
    In 1975, the US National Women's team began a year-round training regime in Pasadena, Texas (moved to Colorado Springs in 1979, Coto de Caza and Fountain Valley, CA in 1980, and San Diego, CA in 1985).
    In 1977, the US National Men's team began a year-round training regime in Dayton, Ohio (moved to San Diego, CA in 1981).
    In 1983, the Association of Volleyball Professionals (AVP) was formed.
    In 1984, the US won their first medals at the Olympics in Los Angeles. The Men won the Gold, and the Women the Silver.
    In 1986, the Women's Professional Volleyball Association (WPVA) was formed.
    In 1987, the FIVB added a Beach Volleyball World Championship Series.
    In 1988, the US Men repeated the Gold in the Olympics in Korea.
    In 1989, the FIVB Sports Aid Program was created.
    In 1990, the World League was created.
    In 1992, the Four Person Pro Beach League was started in the United States.
    In 1994, Volleyball World Wide, created.
    In 1995, the sport of Volleyball was 100 years old!
    In 1996, 2-person beach volleyball was added to the Olympics
    There is a good book, "Volleyball Centennial: The First 100 Years", available on the history of the sport.
    ________________________________________
    Copyright (c)Volleyball World Wide
    Volleyball World Wide on the Computer Internet/WWW
    http://www.Volleyball.ORG/

    English-Albanian dictionary > History of volleyball

См. также в других словарях:

  • New York Tendaberry — Studio album by Laura Nyro Released September 24, 1969 …   Wikipedia

  • New York Music Awards — New York Music Awards™ is an annual awards ceremony and live concert,[1] established in 1986 with its first sold out show at Madison Square Garden. It ran for six years with annual sold out shows[citation needed] at the Beacon Theater, and then… …   Wikipedia

  • New York metropolitan area — New York Newark Bridgeport New York New Jersey Connecticut Pennsylvania Combined Statistical Area (CSA)   Tri State Area   …   Wikipedia

  • New York Philharmonic — Origin New York, New York, United States Genres Classical Occupations Symphony orchestra Years active 1842 present …   Wikipedia

  • New Windsor, New York —   Town   …   Wikipedia

  • New York — New Yorker. 1. Also called New York State. a state in the NE United States. 17,557,288; 49,576 sq. mi. (128,400 sq. km). Cap.: Albany. Abbr.: NY (for use with zip code), N.Y. 2. Also called New York City. a seaport in SE New York at the mouth of… …   Universalium

  • New York Rangers — 2011–12 New York Rangers season Conference Eastern …   Wikipedia

  • New York Foundation — Founder(s) Alfred Heinsheimer, Edward Henderson, Jacob H. Schiff, Isaac Newton Seligman, and Paul Warburg Founded 1909 Location New York, New York, United States …   Wikipedia

  • New York Islanders — 2011 12 New York Islanders season Conference …   Wikipedia

  • New Rochelle, New York —   City   Seal …   Wikipedia

  • New York (film) — New York Theatrical release poster Directed by Kabir Khan Produced by …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»